混凝土泵车臂架断裂特征及损坏原因分析
观察混凝土泵车臂架断裂特征,两节臂尾部的铰点处的侧耳完全断裂,绝大部分的断裂痕迹显示为老裂纹(节臂尾部:各节臂与上一节臂头部的连接端;微硅粉臂节头部:各节臂与下一节臂尾部的连接端。下同)二节臂尾部的另一侧耳板完全扭曲,大弯连杆、小弯连杆及因二节臂尾部耳扳断裂而造成的一节臂头部耳板局部挤压变形。除一节臂头部分变形外,其余均为新裂纹,是由于二节臂尾部一侧耳板断裂引起。
由于混凝土泵车臂架断裂特征(二节臂根部一侧耳板断裂)难于用肉眼明显发现、需要测量的缺陷,如臂架的变形及油缸、连杆的损坏等。
混凝土泵车臂架断裂形成和扩展分析
根据断裂产生的部位和形状,断裂的裂纹大部分为陈旧性裂纹。可以推断出泵车臂架断裂原因,首先为微裂纹,微裂纹经过一定时期交变应力的循环后扩散产生宏观裂纹,最后由于裂纹扩展、延伸引起母材突然断裂。至于裂纹的形成,有以下几方面原因引起。
(1)焊缝与母材未熔合,这种缺陷在焊接缺陷中比较常见,特别是泵车的板材采用高强钢板,从断裂面可以明显看出有一段焊缝熔合不好;
(2)从国外和国内的设计来看,泵车臂架,特别是与转台相连的前几节臂的板材一般采用高强钢板,高强钢板在保证屈服强度时,有些指标如塑性、延展性、可焊性有所下降,特别在焊接时形成的热应力影响区,引起焊缝及周边区域的强度降低;
(3)混凝土泵车在施工作用时,布料臂展开,各节布料臂架、支腿液压缸锁死,整个布料臂系统形成一个悬臂梁结构。且该混凝土泵车臂架采用R形结构,两节臂后还有三、四节臂,其中三节臂还采用折弯结构,两节臂还要承受一定的扭转载荷。同时混凝土泵车在工作时,两个泵送液压油缸交替循环动作,从而不断地将混凝土压送至浇注位置。由于两个泵送油缸交替动作,混凝土泵车承受一个具有一定频率的强迫冲击。在泵送油缸的冲击作用下,布料臂的振动有放大作用,所以布料臂承受交变载荷作用,引起疲劳破坏;
(4)销轴、铜套磨损引起布料臂尾部的冲击力,检测时发现有三根销轴、六个铜套已磨损,并且同一组的二个销轴、铜套磨损程度不一致;
(5)两节臂根部轴套处有应力集中。根据以往的37m相似泵车对此臂的根部作定性分析,轴套的下侧有明显的应力集中。而作为臂架板材的高强板具有良好的韧性和塑性,初始裂纹尖端在高应力集中区和残余力的作用下局部小范围屈服。在这种情况下,交变载荷的作用使微小裂纹逐渐扩展;
(6)泵车基本上是在露天的环境中作业,由于雨水和空气中硫化氢等腐蚀介质的长期侵蚀而引起氧化腐蚀,局部强度下降;
(7)我们国家的混凝土施工机械施工任务繁重,工作环境恶劣;不重视设备保养;机手培训不足,素质不高。如我们国家的混凝土泵车租赁公司,一个月泵送8千至1万多方都是很正常的,1年的泵送方量至少为10至13万方。相应的,国外8小时一天,不随便加班加点,使用人员培训得好,素质高,懂得怎样使用、维护、保养,国外一台泵车3至5年泵送才10万方。基本上是在我国使用一年相当于国外使用三年多,在这样大的施工强度下,机手和维修保养人员的维护保养工作就差得很多。该泵车为欧洲进口泵车,在设计时,按欧美工况考虑在在中国的施工强度、条件。这样,这台混凝土泵车出厂将近4年(标牌显示为2002年6月出厂交付客户使用)即相当于国外使用十多年后出现局部疲劳开裂也不足为奇了;
(8)由于泵车这种高度综合性设备,局部裂纹和疲劳裂纹是不能完全避免的,欧洲把500小时要维修保养作为一种制度,而我国的这方面做得不好,有时连起码的保养,如销轴和铜套之间的注油都未进行,更何况整体保养。有时出一点裂纹并不可怕,经过小小修理或者加强就可了,如未发现,或者发现了不及时采取措施,将会使裂纹扩大,最后有可能导致结构破坏,甚至酿成事故。此泵车的损坏就说明了这个问题。
混凝土外加剂全述
在混凝土中加人外加剂后,由于品种不同,产生的作用也各异,多数是产生物理作用,例如吸附于水泥粒子表面形成吸附膜,改变了电位,产生不同的吸力或斥力;有的会破坏絮凝结构,提高水泥扩散体系的稳定性,改善水泥水化的条件:有的能形成大分子结构,改变水泥粒子表面的吸附状态;有的会降低水的表面张力和表面能等:还有少数直接参与化学反应,与水泥生成新的化合物。
由于外加剂能有效地改善混凝土的性能,而且具有良好的经济效益.在许多国家都得到广泛的应用,成为混凝土中不可或缺的材料。尤其是高效能减少剂的使用.水泥粒子能得到充分的分散,用水量大大减少,水泥潜能得到充分发挥.致使水泥石较为致密,孔结构和界面区微结构得到很好的改善,从而使得混凝土的物理力学性能有了很大的提高,无论是不透水性,还是氯离子扩散、碳化、抗硫酸盐侵蚀.以及抗冲、耐磨性能等各方面均优于不掺外加剂的混凝土,不仅提高了强度,改善和易性.还可以提高混凝土的耐久性。只有掺用高效减水剂,配制高施工性、高强度、高耐久性的高性能混凝土才有可能实现。
混凝土碳化影响因素分析
混凝土的碳化作用是指大气中的二氧化碳在存在水的条件下与水泥水化产物氢氧化钙发生反应,生成碳酸钙和水。因氢氧化钙是碱性的,而碳酸钙是中性,所以碳化又叫中性化。
碳化过程是二氧化碳由混凝土表面向内部逐渐扩散深入。碳化引起水泥石化学组成及组织结构的变化,二氧化碳的作用不仅对水泥石中的氢氧化钙发生反应,而且由于氢氧化钙浓度的降低,将要侵蚀和分解水泥石中所有的水化产物,生成硅胶和铝胶,从而对混凝土的化学性能和物理力学性能产生明显的影响,主要是对混凝土的碱度、强度和收缩产生影响。影响混凝土碳化的因素有很多,先从以下方面进行分析。
1.环境温湿度
混凝土碳化速度受环境相对湿度影响很大。环境相对湿度的变化决定着混凝土孔隙水饱和度的大小。湿度较小时,碳化反应所需水分不足,碳化速度较慢。湿度过大时,混凝土含水率较高,阻碍了CO2在混凝土中的扩散,因此碳化速度也较慢。关于混凝土最快碳化速度的环境相对湿度范围说法不一,一般认为应该在50%~70%之间。我国规范规定的混凝土加速碳化试验的环境相对湿度为70%。对于混凝土的碳化来说,温度升高将导致CO2气体的扩散速度、离子运动速度和化学反应速度提高,这些都有助于混凝土碳化速度的提高,但同时,温度升高将导致CO2气体溶解度的下降,使混凝土碳化速度下降。同时有人认为,温度变化对混凝土碳化速度的影响并不显著。
2.水灰比
水灰比越大,碳化速度越快。由于CO2的扩散是在混凝土内部的孔隙中进行的,水灰比越大,混凝土内部孔隙率增加,混凝土越不密实,扩散系数提高,加快了碳化速度。通过长期暴露试验发现混凝土与水灰比之间大致呈线性关系,也有资料表明,碳化深度与水灰比并非呈线性正比关系,而是近似呈指数函数关系。水泥用量直接影响混凝土吸收CO2的量,其吸收量等于水泥用量与混凝土水化程度的乘积。增加水泥用量一方面改变混凝土的工作性,提高了混凝土的密实性,另一方面还可以增加混凝土的碱性储备,使其抗碳化性能大大增强。通过对不同水灰比的粉煤灰混凝土的研究,结果表明,粉煤灰对于混凝土的抗压强度、气渗性和碳化程度的影响与水灰比有着很大的关系。当低水灰比时,掺加30%粉煤灰的混凝土可以明显改善混凝土的强度,而对气渗性和抗碳化性能没有太大的影响。而当水灰比较高时,粉煤灰混凝土的强度、气渗性和抗碳化性能均有不同程度的下降。
3.矿物掺和料
普遍认为,在混凝土中掺入粉煤灰、矿渣、石灰石粉和硅灰等矿物掺合料具有活性,与Ca(OH)2反应,会降低混凝土的碱度,从而使混凝土抗碳化能力减弱。实验人员分别对掺加矿渣、粉煤灰和硅灰的混凝土进行了实验研究,发现掺加粉煤灰的混凝土比起未掺的混凝土碳化更深。由于掺合料的加入引起的火山灰效应,混凝土中Ca(OH)2量减少,导致碳化速度加快,这在矿渣混凝土和粉煤灰混凝土中尤其明显。而掺加硅灰的混凝土抗碳化能力反而提升,这是由于硅灰对混凝土的孔结构有密实的作用,而这种作用比起Ca(OH)2含量的降低起到了主导的作用。他同时研究了混凝土抗压强度和碳化性能的关系,发现强度越低,混凝土碳化深度越高,并呈线性关系。
4.养护条件
混凝土早期的养护状况对其碳化过程有较大的影响,养护条件的不同会导致水泥水化程度的不同。一般认为,在早期温度适宜、水分充足的环境下凝固的混凝土、水泥可以得到充分的水化,生成的水泥石更加密实,因早期养护不良而造成水泥水化不充分的混凝土,其表层渗透性增大,更容易碳化。
通过对不同施工条件下混凝土的碳化深度进行研究,发现在标准养护和薄膜加草袋养护条件下的表面砂浆层由于水化充分,加速碳化后,碳酸钙生成的结晶体发育完整,这将有效堵塞毛细孔,使砂浆层密度加大,延缓碳化速度;而无覆盖养护条件下的表面砂浆层中夹杂着未充分水化的硅酸三钙和硅酸二钙,加速碳化后形成的结晶体有很大一部分是水化硅酸钙水并释放出淡水,这给碳化过程的继续创造了条件。对于混凝土中的大于50nm的毛细孔,大气压力下将产生毛细作用,内部的水离子团可以沿着毛细孔向外蒸发,空气中的CO2则在负压吸力下进入混凝土。同时,室内标准养护和现场薄膜保温保湿试件可以很好地降低50nm以下的毛细孔数量。
5.骨料品种及颗粒级配
一般来说,混凝土中的砂和碎石都不会促进混凝土的碳化,但由于大石子的底部容易产生水泥净浆的离析和沉淀,从而产生细小的裂缝,增加混凝土的渗透性。同时有些硅骨料会与Ca(OH)2发生碱-骨料反应,加快碳化速度。因此,级配良好、大粒径颗粒少及性能稳定,不会发生碱-骨料反应的混凝土骨料对混凝土的抗碳化性能最有利。
骨料的品种和颗粒级配影响混凝土的密实度,从而影响碳化速度。骨料不促进混凝土碳化,在水灰比相同时,使用粒径大的骨料比使用粒径小的骨料容易碳化。这是因为大石子底部容易产生净浆的离析、沉淀,从而增加了渗透性。采用级配合理的集料配制的混凝土,在其成型凝固的过程中更容易紧密结合,有助于提高混凝土的密实度,从而降低碳化速度。